


### Answer on Question #41193 – Physics – Mechanics

A 150-kg ladder leans against a smooth wall, making an angle of 30 degrees with the floor. The centre of gravity of the ladder is one-third the way up from the bottom. How large a horizontal force must the floor provide if the ladder is not to slip?

**Solution:**



$\alpha = 30^\circ$  – angle which ladder makes with the wall

$N_A$  – reaction force from the floor

$N_B$  – reaction force from the wall

$m = 150\text{kg}$  – mass of the ladder

$L$  – length of the ladder

Newton's second law for the ladder (the first law of equilibrium):

$$\vec{F} + \vec{mg} + \vec{N}_A + \vec{N}_B = \vec{0}$$

Projection of the law on the X-axis:

$$x: N_B - F = 0 \Rightarrow N_B = F \quad (1)$$

Momentum equation for point A (the second law of equilibrium):

$$A: M_{mg} + M_F + M_{N_A} + M_{N_B} = 0 \quad (2)$$

( $M_{N_A} = M_F = 0$ , because moment arm of this forces is zero)

$$M_{mg} = -mg \cdot \frac{L}{3} \cos \alpha \quad (\text{minus sign because of the direction of force})$$

$$M_{N_B} = N_B \cdot L \sin \alpha = |\text{using (1)}| = F \cdot L \sin \alpha$$

→ (3):

$$F \cdot L \sin \alpha - mg \cdot \frac{L}{3} \cos \alpha = 0$$

$$F = \frac{mg}{3} \cdot \frac{\cos \alpha}{\sin \alpha} = \frac{mg}{3 \tan \alpha} = \frac{mg}{3 \tan \alpha} = \frac{150\text{kg} \cdot 9.8 \frac{\text{N}}{\text{kg}}}{3 \cdot \tan 30^\circ} = 849\text{N}$$

**Answer:** horizontal force that the floor provide is equal to 849N.

<http://www.AssignmentExpert.com/>