

Answer on Question #41138 – Physics – Mechanics | Kinematics | Dynamics

A body is released from a height equal to the radius R of the earth. The velocity of the body when it strikes the surface of the earth will be

Solution:

Since the initial velocity of the body is zero, its total energy is:

$$E = -\frac{GmM}{r} \quad (1)$$

where m is mass of the body, M is the mass of the earth and r is distance from the centre of the earth. When the body reaches the earth, let its velocity be v and its distance from the centre of the earth is the earth's radius R . Therefore, the energy now is

$$E = \frac{1}{2}mv^2 - \frac{GmM}{R} \quad (1)$$

Equating (1) and (2) we get

$$\frac{1}{2}mv^2 - \frac{GmM}{R} = -\frac{GmM}{r}$$
$$v^2 = 2GM\left(\frac{1}{R} - \frac{1}{r}\right)$$

Also $g = \frac{GM}{R^2}$. Therefore $GM = gR^2$. Using this in above equation we get

$$v = R\left(2g\left(\frac{1}{R} - \frac{1}{r}\right)\right)^{\frac{1}{2}}$$

Now $r = 2R$ (given). Therefore

$$v = R\left(2g\left(\frac{1}{R} - \frac{1}{2R}\right)\right)^{\frac{1}{2}} = \sqrt{gR}$$

Answer: velocity of the body when it strikes the surface of the earth will be \sqrt{gR} .