

Answer on Question#41096 – Physics - Mechanics | Kinematics | Dynamics

Work done in increasing the size of a soap bubble from a radius of 3 cm to 5cm is nearly (Surface tension of soap solution = 0.03 Nm⁻¹) :

- (1) 2π mJ
- (2) 0.4π mJ
- (3) 4π mJ
- (4) 0.2π mJ

Solution:

$$T = 0.03 \frac{N}{m} \text{ – surface tension of soap;}$$

$r_1 = 0.03 \text{ m}$ – initial radius of the bubble;

$r_2 = 0.05 \text{ m}$ – final radius of the bubble;

Work done = (surface tension) \times (increase in area):

$$W = T(S_2 - S_1) \quad (1)$$

Increase in area of the soap bubble:

$$S_2 - S_1 = 4\pi r_1^2 - 4\pi r_2^2 = 4\pi(r_1^2 - r_2^2) \quad (2)$$

(2) in (1):

$$W = T \cdot 4\pi(r_1^2 - r_2^2) = 0.03 \frac{N}{m} \cdot 4 \cdot \pi \cdot ((0.05m)^2 - (0.03m)^2) = 0.2\pi \cdot 10^{-3}J$$
$$= 0.2 \text{ mJ}$$

Answer: (4) 0.2π mJ.