A 2-kilogram box hangs by a massless rope from a ceiling as shown. A force slowly pulls the box horizontally to the side until the force is equal to 10 N . The box is then in equilibrium. The angle that the rope makes with the vertical is closest to:

(a) $\sin -1(0.5)$
(b) tan-1(2.0)
(c) $\sin -1(2.0)$
(d) 45 o
(e) $\tan -1(0.5)$

Solution

As box is in equilibrium:

$$
\sum \vec{F}=0
$$

So, for horizontal direction:

$$
F-T \cdot \sin \theta=0
$$

There T is tension of rope;
For vertical axis:

$$
T \cdot \cos \theta-m \cdot g=0
$$

Thus:

$$
\begin{aligned}
T & =\frac{m g}{\cos \theta} \\
F & =T \cdot \sin \theta
\end{aligned}
$$

So:

$$
\begin{gathered}
F=\frac{m g}{\cos \theta} \cdot \sin \theta=m g \cdot \tan \theta \\
\theta=\arctan \frac{F}{m g}
\end{gathered}
$$

Calculation:

$$
\theta=\arctan \frac{10}{2 \cdot 9.8}=\tan ^{-1} \frac{10}{2 \cdot 9.8} \approx \tan ^{-1} 0.5
$$

Answer: (E) $\tan ^{-1} 0.5$
http://www.AssignmentExpert.com/

