

Answer on Question #41006, Physics, Mechanics

The ambulance (mass 3000kg) shown in the Figure slides (wheels locked) down a frictionless incline that is 10 m long. It starts from rest at point A, and continues along a rough surface until it comes to a complete stop at point C. If the coefficient of kinetic friction between the ambulance and the horizontal rough surface is 0.1.

- (a) Calculate the speed of the ambulance at point B.
- (b) Compute the distance d the ambulance slides on the horizontal rough surface before stopping

Solution:

(a)

Mechanical energy E is the sum of the potential and kinetic energies of an object.

$$E = U + K$$

The total mechanical energy in any isolated system of objects remains constant if the objects interact only through conservative forces:

$$\begin{aligned} U_f + K_f &= U_i + K_i \\ 0 + \frac{1}{2}mv_f^2 &= mgh + 0 \\ v_f &= \sqrt{2gh} \\ h &= L \sin 30^\circ \end{aligned}$$

Thus,

$$v_B = \sqrt{2gh} = \sqrt{2gL \sin 30^\circ} = \sqrt{2 \cdot 9.8 \cdot 10 \cdot \sin 30^\circ} = 9.9 \text{ m/s}$$

b)

The force of kinetic friction is given by

$$F_k = \mu N$$

where F_k is the force of kinetic friction, μ is the coefficient of kinetic friction, and N is the normal force that presses the sliding object to the surface.

If the object is sliding on a level surface, $N = mg$.

The equation of motion is

$$ma = -F_k$$

Thus,

$$ma = -\mu mg$$

The distance is

$$d = \frac{v_C^2 - v_B^2}{2a} = \frac{v_C^2 - v_B^2}{-2\mu g} = \frac{0 - 9.9^2}{-2 \cdot 0.1 \cdot 9.8} = 50 \text{ m.}$$

Answer. a) $v_f = 9.9 \text{ m/s,}$

b) $d = 50 \text{ m.}$