Answer on Question \#40982, Physics, Mechanics | Kinematics | Dynamics

Two waves 1 and 2 are present on a string:
$\mathrm{y} 1=(35 \mathrm{~mm}) \operatorname{Sin}\left[\left(8.4 \mathrm{~m}^{\wedge}-1\right) \mathrm{x}-\left(15.7 \mathrm{~s}^{\wedge}-1\right) \mathrm{t}\right]$
$y 2=(35 m m) \operatorname{Sin}\left[\left(8.4 m^{\wedge}-1\right) x+\left(15.7 s^{\wedge}-1\right) t\right]$
(i) Write the expression for the resultant wave, $\mathrm{y}=\mathrm{y} 1+\mathrm{y} 2$ in the form of wave function for a standing wave.
(ii) Determine the x coordinates of the first two antinodes, starting at the origin and progressing towards + x direction. (iii) Determine the x coordinate of the node that is between the antinodes of part (ii).

Solution

(i) Two waves 1 and 2 are present on a string:

$$
\begin{aligned}
& y_{1}=35 \sin (8.4 x-15.7 \mathrm{t}) \\
& y_{2}=35 \sin (8.4 x+15.7 \mathrm{t})
\end{aligned}
$$

The sum of these two waves is:

$$
y=y_{1}+y_{2}=35 \sin (8.4 x-15.7 \mathrm{t})+35 \sin (8.4 x+15.7 \mathrm{t})
$$

We can use formulae for the sum of sinuses:

$$
\sin a+\sin b=2 \sin \frac{a+b}{2} \cos \frac{a-b}{2} .
$$

So

$$
y=y_{1}+y_{2}=70 \sin (8.4 x) \cos (15.7 \mathrm{t})
$$

(ii) The positions of the antinodes are given by

$$
x=\frac{\lambda}{4}, \frac{3 \lambda}{4}, \frac{5 \lambda}{4}, \ldots, \frac{(2 n-1) \lambda}{4} n=1,2,3 \ldots
$$

In our case $k=\frac{2 \pi}{\lambda}=8.4 \frac{\mathrm{rad}}{\mathrm{m}}$ and the wavelength is $\lambda=\frac{2 \pi}{8.4}=0.748 \mathrm{~m}$.
The x coordinates of the first two antinodes are

$$
\begin{aligned}
& x_{1}=\frac{\lambda}{4}=0.187 \mathrm{~m} \\
& x_{2}=\frac{3 \lambda}{4}=0.561 \mathrm{~m} .
\end{aligned}
$$

(iii) The node is located at

$$
x=\frac{\lambda}{2}=0.374 \mathrm{~m} .
$$

Answer: (i) $70 \sin (8.4 x) \cos (15.7 t)$; (ii) $0.187 \mathrm{~m}, \mathbf{0 . 5 6 1} \mathrm{~m}$; (iii) $0.374 m$.

