Answer on Question \#40970, Physics, Mechanics

From point A to B on the rough surface, the cyclist lost 2000J of energy due to the frictional force of the rough surface of the 10 m road. She started with an initial speed $v A$ at point A, arriving at point B with a speed of $v B$. The cyclist barely made it to the flat part (point C) of the frictionless surface without pedaling.

If the weight of the bike and the cyclist is 980 N , and point C is located at $\mathrm{h}=0.5 \mathrm{~m}$ above the ground, find:
a. The speed of cyclist at point $B, v B$
b. The speed of cyclist at point $A, v A$
c. The coefficient of kinetic friction, $\mu \mathrm{k}$, between the bike tires and the road.

Solution

If the weight of the bike and the cyclist is 980 N , then mass of the bike and the cyclist is

$$
m=\frac{W}{g}=\frac{980}{9.8}=100 \mathrm{~kg} .
$$

According to the law of conservation of energy the kinetic energy at point A is equal the sum of the wrk against the frictional force and potential energy at point C :

$$
\frac{m v_{A}^{2}}{2}=A+m g h .
$$

The speed of cyclist at point A:

$$
v_{A}=\sqrt{\frac{2 A}{m}+2 g h}=\sqrt{\frac{2 \cdot 2000 \mathrm{~J}}{100 \mathrm{~kg}}+2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 0.5 \mathrm{~m}}=7 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

The kinetic energy of cyclist at point B is

$$
\frac{m v_{B}^{2}}{2}=\frac{m v_{A}^{2}}{2}-A .
$$

The speed of cyclist at point B:

$$
v_{A}=\sqrt{v_{A}^{2}-\frac{2 A}{m}}=\sqrt{7^{2}-\frac{2 \cdot 2000}{100}}=3 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

The coefficient of kinetic friction, μ_{k}, between the bike tires and the road is

$$
\mu_{k}=\frac{A}{W \cdot l}=\frac{2000 \mathrm{~J}}{980 \mathrm{~N} \cdot 10 \mathrm{~m}}=0.2
$$

