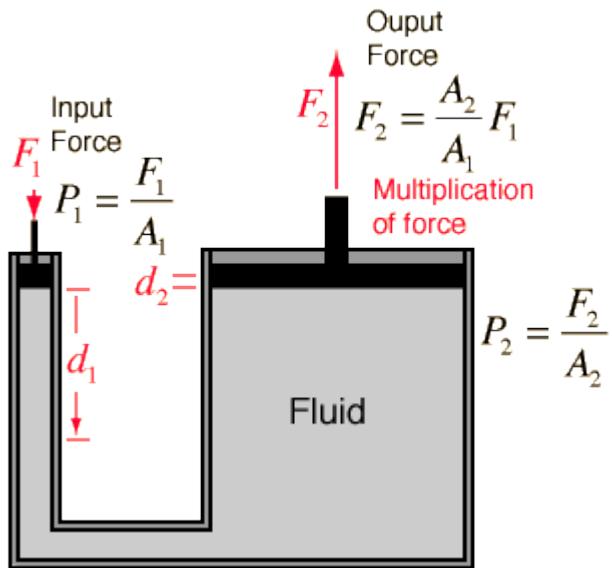


Answer on Question #40966, Physics, Mechanics

A force of 250 N is applied to a hydraulic jack piston that is 5.0E-3 m in radius. If the piston which supports the load has a radius of 0.05 m, approximately how much mass can be lifted by the hydraulic jack? Ignore any difference in height between the pistons.

- (a) 255 kg
- (c) 800 kg
- (e) 6300 kg
- (b) 500 kg
- (d) 2550 kg


Solution:

Any externally applied pressure is transmitted to all parts of the enclosed fluid, making possible a large multiplication of force (hydraulic press principle).

A multiplication of force can be achieved by the application of fluid pressure according to Pascal's principle, which for the two pistons implies

$$P_1 = P_2$$

This allows the lifting of a heavy load with a small force.

$$F_1 / \text{Area small piston} = F_2 / \text{Area of large piston}$$

$$\text{Area of circle is } A = \pi R^2$$

$$\text{Area of small piston } A_1 = \pi \cdot (5 \cdot 10^{-3})^2 = \pi \cdot 25 \cdot 10^{-6}$$

$$\text{Area of the large piston } A_2 = \pi \cdot (0.05)^2 = \pi \cdot 25 \cdot 10^{-4}$$

We need not figure these areas out any further. The π 's will cancel.

$$F_1 = m_1 g = 250 \text{ N}, F_2 = m_2 g$$

Thus,

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

$$\frac{F_1}{A_1} = \frac{m_2 g}{A_2}$$

So,

$$m_2 = \frac{F_1 A_2}{A_1 g} = \frac{250 \cdot \pi \cdot 25 \cdot 10^{-4}}{\pi \cdot 25 \cdot 10^{-6} \cdot 9.81} \approx 2550 \text{ kg}$$

Answer. (d) 2550 kg.