Answer on Question \#40896 - Physics - Mechanics

A ROD OF LENGTH 3m AND ITS MASS PER UNIT LENGTH IS DIRECTLY PROPORTIONAL TO DISTANCE X FROM ITS END. THE CENTRE OF MASS OF THE ROD OF FROM THAT END WILL BE AT ?

Solution:

$L=3 m$ - length of the rod;
Mass per unit length is directly proportional to the distance x from its end:

$$
\begin{equation*}
d m=x d x \tag{1}
\end{equation*}
$$

Mass of the rod:

$$
\begin{equation*}
\mathrm{M}=\int_{0}^{\mathrm{L}} \mathrm{dm} \tag{2}
\end{equation*}
$$

Formula for the centre of mass:

$$
\begin{gathered}
x_{c m}=\frac{\int_{0}^{L} x \cdot d m}{M} \\
\text { (1)and(2)in(3): } \\
x_{c m}=\frac{\int_{0}^{L} x^{2} d x}{\int_{0}^{L} x d x}=\frac{\int_{0}^{L} x^{2} d x}{\int_{0}^{L} x d x}=\frac{\left.\frac{x^{3}}{3}\right|_{0} ^{L}}{\left.\frac{x^{2}}{2}\right|_{0} ^{L}}=\frac{\frac{L^{3}}{3}}{\frac{L^{2}}{2}}=\frac{L^{3}}{3} \cdot \frac{2}{L^{2}}=\frac{2}{3} L=\frac{2}{3} \cdot 3 \mathrm{~m}=2 \mathrm{~m}
\end{gathered}
$$

Answer: the center of mass of the rod from it's end will be at the distance 2 m .

