Answer on Question \#40895, Physics, Mechanics

IN A FREE SPACE, A RIFLE OF MASS M SHOOTS A BULLET OF MASS m AT A STATIONARY MASS M DISTANCE D AWAY FROM IT. WHEN THE BULLET HAS MOVED THROUGH A DISTANCE d TOWARDS THE BLOCK, THE CENTRE OF MASS OF BLOCK - BULLET SYSTEM IS AT A DISTANCE OF?

Solution

If x is distance moved by rifle when bullet has traveled through a distance d, then -

$$
M x=m d \rightarrow x=\frac{m d}{M} .
$$

So, distance of bullet from block is $D-d$ and distance between block and rifle is $D+x$.
Distance of center of mass from block in

$$
r=\frac{M \cdot 0+m(D-d)}{m+M}=\frac{m(D-d)}{m+M} .
$$

Answer: $\frac{m(D-d)}{m+M}$ from the block.

