A BLOCK SLIDES DOWN AN INCLINED PLANE OF SLOPE ANGLE THETA WITH A CONSTANT VELOCITY. IT IS THEN PROJECTED UP THE PLANE WITH AN INITIAL VELOCITY U. DISTANCE UPTO WHICH IT WILL RISE BEFORE COMING TO REST IS ?

Solution:

F_{fr} - friction force;
θ - angle of the inclined plane;
U - initial velocity;
t - time after the block stoped;
a - deceleration of the block;

Newton's second law for the block when its moving down along the X -axis before it was projected ($\mathrm{V}=$ const \Rightarrow acceleration $=0$):
$\mathrm{x}: \mathrm{F}_{\mathrm{fr}}-\mathrm{mg}_{\mathrm{x}}=0$
$\mathrm{F}_{\mathrm{fr}}=\mathrm{mg}_{\mathrm{x}}$
From te right triangle $A B C$:
$\sin \theta=\frac{\mathrm{mg}_{\mathrm{x}}}{\mathrm{mg}} \Rightarrow \mathrm{mg}_{\mathrm{x}}=\mathrm{mg} \sin \theta$

Newton's second law for the block when its moving up along the X -axis after it was projected. Force that acts of the block:
$\mathrm{x}: \mathrm{F}_{\mathrm{net}}=\mathrm{F}_{\mathrm{fr}}+\mathrm{mg}_{\mathrm{x}}$
(1) and(2)in(3):
$\mathrm{F}_{\text {net }}=\mathrm{mg}_{\mathrm{x}}+\mathrm{mg}_{\mathrm{x}}=2 \mathrm{mg}_{\mathrm{x}}=2 \mathrm{mg} \sin \theta$
Loss of KE by block = work done by friction force + PE (final speed of the block $=0$):

$$
\begin{gather*}
\frac{m U^{2}}{2}=F_{\text {net }} \cdot d+m g d \cdot \sin \theta \tag{5}\\
\frac{(4) \operatorname{in}(5):}{2}=2 \mathrm{mgd} \sin \theta+\mathrm{mgd} \cdot \sin \theta
\end{gather*}
$$

$$
\begin{aligned}
\frac{\mathrm{U}^{2}}{2} & =3 \mathrm{gd} \sin \theta \\
\mathrm{~d} & =\frac{\mathrm{U}^{2}}{6 \mathrm{~g} \sin \theta}
\end{aligned}
$$

Answer: distance upto which block will rise before coming to rest is equal to $\frac{\mathrm{U}^{2}}{6 \mathrm{~g} \sin \theta}$.

