Answer on Question\#40854 - Physics - Mechanics

A 2000 kg satellite orbits the earth at a height of 300 km . What is the speed of the satellite and its period? Take $\mathrm{G}=6: 67 \times 10-11 \mathrm{Nm} 2=\mathrm{kg} 2$, Mass of the earth is $5: 98 \times 1024 \mathrm{~kg}$

Solution:

$\mathrm{M}=5.98 \times 10^{24} \mathrm{~kg}-$ mass of Earth
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~kg}^{2}}$ - gravitational constant;
$R=6.3 \times 10^{6} \mathrm{~m}-$ radius of Earth;
$h=300 \mathrm{~km}-$ satellite orbits heigth above the Earth;

Consider a satellite with mass m orbiting a central body with a mass of mass $M_{\text {earth }}$. If the satellite moves in circular motion, then the net centripetal force acting upon this orbiting satellite is given by the relationship

$$
\begin{equation*}
F_{n e t}=m \frac{v^{2}}{R} \tag{1}
\end{equation*}
$$

This net centripetal force is the result of the gravitational force that attracts the satellite towards the central body and can be represented as

$$
\begin{equation*}
\mathrm{F}_{\mathrm{grav}}=\mathrm{G} \frac{\mathrm{mM}}{\mathrm{R}^{2}} \tag{2}
\end{equation*}
$$

Since $F_{\text {net }}=F_{\text {grav }}$, the above expressions for centripetal force and gravitational force can be set equal to each other. Thus,

$$
\begin{gathered}
(1)=(2): \\
\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{R}}=\mathrm{G} \frac{\mathrm{mM}}{\mathrm{R}^{2}}
\end{gathered}
$$

Observe that the mass of the satellite is present on both sides of the equation; thus it can be canceled by dividing through by m. Then both sides of the equation can be multiplied by R, leaving the following equation.

$$
\begin{gathered}
\mathrm{v}^{2}=\frac{\mathrm{GM}}{\mathrm{R}} \\
\mathrm{v}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}+\mathrm{h}}}=\sqrt{\frac{6.67 \times 10^{-11} \mathrm{~N} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~kg}^{2}} \cdot 5.98 \times 10^{24} \mathrm{~kg}}{6.3 \times 10^{6} \mathrm{~m}+300 \times 10^{3} \mathrm{~m}}}=7774 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

The equation that is useful in describing the motion of satellites is Newton's form of Kepler's third law. The period of a satellite (T) and the mean distance from the central body $(\mathrm{R}+\mathrm{h})$ are related by the following equation:

$$
\begin{gathered}
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~T}^{2}}{\mathrm{R}^{3}}=\frac{4 \pi^{2}}{\mathrm{GM}}} \begin{array}{c}
\frac{(\mathrm{R}+\mathrm{h})^{3}}{\mathrm{GM}}
\end{array}=2 \cdot 3.14 \sqrt{\frac{\left(6.3 \times 10^{6} \mathrm{~m}+300 \times 10^{3} \mathrm{~m}\right)^{3}}{6.67 \times 10^{-11} \mathrm{~N} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~kg}^{2}} \cdot 5.98 \times 10^{24} \mathrm{~kg}}}=5332 \mathrm{~s} \\
=1.48 \text { hours }
\end{gathered}
$$

Answer: speed of the satellite: $v=7774 \frac{\mathrm{~m}}{\mathrm{~s}}$;
period of the satellite: $\mathrm{T}=1.48$ hours.

