Answer on Question \#40852, Physics, Mechanics

At what altitude above the earth's surface would the acceleration due to gravity be $4.9 \mathrm{~ms}^{-2}$? Assume the mean radius of the earth is 6.4×10^{6} meters and the acceleration due to gravity $9.8 \mathrm{~ms}^{-2}$ on the surface of the earth.

Solution:

The velocity of a freely falling body increased at a steady rate i.e., the body had acceleration. This acceleration is called acceleration due to gravity g.

Let a body of mass m be placed on the surface of the Earth:

$$
g=G \frac{M}{R^{2}}
$$

where M is the mass of the Earth, R is the radius of the Earth and G is the gravitational constant.
et the body be now placed at a height h above the Earth's surface. Let the acceleration due to gravity at that position be g^{\prime}.

Then,

$$
g^{\prime}=G \frac{M}{(R+h)^{2}}
$$

For comparison, the ratio between g^{\prime} and g is taken

$$
\frac{g^{\prime}}{g}=G \frac{M}{(R+h)^{2}} \frac{R^{2}}{G M}=\left(\frac{R}{R+h}\right)^{2}
$$

Thus,

$$
\begin{gathered}
h=R\left(\sqrt{\frac{g}{g^{\prime}}}-1\right) \\
h=6.4 \cdot 10^{6} \cdot\left(\sqrt{\frac{9.8}{4.9}}-1\right)=2.65 \cdot 10^{6} \mathrm{~m}
\end{gathered}
$$

Answer. $h=2.65 \cdot 10^{6} \mathrm{~m}$.

