Answer on Question \#40847, Physics, Molecular Physics

Calculate the work done by one mole of a van der Waals gas if during its isothermal expansion its volume increases from $1 \mathrm{~m}^{3}$ to $2 \mathrm{~m}^{3}$ at a temperature 300 K . Take $\mathrm{a}=1.39 \times 10^{-6} \mathrm{~atm} \mathrm{~m}^{6} \mathrm{~mol}^{-2}$ and $\mathrm{b}=39.1 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$.

Solution:

We can start from the definition of work,

$$
W=-\int P d V
$$

An expression for P is required - this comes from the van der Waals equation. Solving the van der Waals equation for P leads to

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}
$$

The equation uses the following state variables: the pressure P, total volume V, number of moles n, and absolute temperature of the system T.

Substituting this relation into the equation for work yields

$$
W=-\int_{V_{1}}^{V_{2}}\left(\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}\right) d V
$$

Since the process is isothermal, T can be pulled out of the integral along with the other constants to give

$$
W=-n R T \int_{V_{1}}^{V_{2}} \frac{1}{V-n b} d V+a n^{2} \int_{V_{1}}^{V_{2}} \frac{1}{V^{2}} d V
$$

Integrating leads to the result

$$
W=-n R T \ln \left(\frac{V_{2}-n b}{V_{1}-n b}\right)-a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)
$$

1 atm $=101325 \mathrm{~Pa}$
$a=1.39 \times 10^{-6} \mathrm{~atm} \mathrm{~m}^{6} \mathrm{~mol}^{-2}=1.39 \cdot 101325 \cdot 10^{-6}=0.1408 \mathrm{~Pa} \cdot \mathrm{~m}^{6} \cdot \mathrm{~mol}^{-2}$
So,

$$
W=-8.31 \cdot 300 \cdot \ln \left(\frac{2-39.1 \cdot 10^{-6}}{1-39.1 \cdot 10^{-6}}\right)-0.1408 \cdot\left(\frac{1}{2}-\frac{1}{1}\right)=-1727.99 \mathrm{~J}
$$

Answer. $W=-1728 \mathrm{~J}$.

