Answer on Question \#40826, Physics, Mechanics

A projectile thrown at 45° just cross the top of pole whose foot is 6 m from point of projection. The projectile falls on the other side at a distance 3 m from foot of pole. Height of pole is?
(a) 1.5 m
(b) 2 m
(c) 2.5 m
(d) 3 m

Solution:
Given:
$x_{1}=6 \mathrm{~m}$,
$x_{2}=3 \mathrm{~m}$,
$\theta=45^{\circ}$
$h=$?

Neglecting air resistance, the projectile is subject to a constant acceleration $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$, due to gravity, which is directed vertically downwards.

Equations related to trajectory motion (projectile motion) are given by
Horizontal distance, $x=v_{0 x} t$
Vertical distance, $y=v_{0 y} t-\frac{1}{2} g t^{2}$
Horizontal range, $R=\frac{v_{0}^{2} \sin 2 \theta}{g}$
where v_{0} is the initial velocity.
We have

$$
R=6+3=9 \mathrm{~m}
$$

Thus,

$$
v_{0}=\sqrt{\frac{R g}{\sin 2 \theta}}=\sqrt{\frac{9 \cdot 9.81}{1}}=9.4 \mathrm{~m} / \mathrm{s}
$$

Time to reach a pole is

$$
t_{1}=\frac{x_{1}}{v_{0 x}}=\frac{x_{1}}{v_{0} \cos \theta}=\frac{6}{9.4 \cdot \cos 45^{\circ}}=0.9027 \mathrm{~s}
$$

Vertical distance,

$$
h=y=v_{0} \sin \theta t_{1}-\frac{1}{2} g t_{1}^{2}=9.4 \cdot \sin 45^{\circ} \cdot 0.9027-\frac{9.81 \cdot 0.9027^{2}}{2}=2 \mathrm{~m}
$$

Answer. (b) 2 m .

