Answer on Question \#40825, Physics, Mechanics Question: A particle is moving in the $x-y$ plane under the influence of a force such that its linear momentum is $\vec{P}(t)=A\left(\cos (k t)^{i}-\sin (k t) \vec{j}\right)$, A and k are constants. The angle b / w force and linear mom is ????
Solution. First we find the coordinates of vector of the force.

$$
\vec{F}=\frac{d \vec{p}}{d t}=-A k(\sin (k t) \vec{i}+\cos (k t) \vec{j})
$$

$$
\begin{aligned}
& \text { Now the angle is } \\
& \qquad(\vec{p} \cdot \vec{F})=|\vec{p}||\vec{F}| \cos \alpha \\
& \alpha=\arccos \left(\frac{(\vec{p} \cdot \vec{F})}{|\vec{p}||\vec{F}|}\right)=\arccos \left(\frac{-2 A^{2} k(\cos (k t) \sin (k t))}{-2 A^{2} k\left(1-\sin ^{2}(k t) \cos ^{2}(k t)\right)}\right)=\arccos \left(\frac{\sin (2 k t) / 2}{1-\sin ^{2}(2 k t) / 4}\right)
\end{aligned}
$$

