Answer on Question \#40823, Physics, Mechanics

A spot light S rotates in a horizontal plane with a constant angular velocity. A spot of light P moves along wall. The velocity of spot along the wall is $6 \mathrm{~m} / \mathrm{s}$, when spot light is rotated by 45 degree. What is angular velocity of spot light??
(a) $1 \mathrm{rad} / \mathrm{s}$
(b) $2 \mathrm{rad} / \mathrm{s}$
(c) $0.5 \mathrm{rad} / \mathrm{s}$
(d)0.1rad/s

Solution:

The rate of change of angular displacement of the particle in a given time is called angular velocity. It is expressed as

$$
\omega=\frac{\theta}{t}
$$

Where θ is angular displacement and t is the time taken.
$\theta=45^{\circ}=45^{\circ} \cdot \pi / 180 \mathrm{rad}=45 \cdot 3.14 / 180=0.785 \mathrm{rad}$.

The time t is

$$
t=\frac{d}{v}
$$

where d is linear displacement and v is the velocity of spot.
For our case $\left(\theta=45^{\circ}\right)$ the d is equal to the distance to a wall.
Thus,

$$
\begin{gathered}
\omega=\frac{\theta}{t}=\frac{\theta v}{d} \\
\omega=\frac{0.785 \cdot 6}{d}=\frac{4.71}{d} \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

Answer. $\omega=\frac{4.71}{d}$.

