Answer on Question\#40815 - Physics - Mechanics

A 65 kg sprinter completes a 100 m race in 9.83 s . Calculate the average kinetic energy of the sprinter

Solution:

$\mathrm{m}=65 \mathrm{~kg}-$ mass of the sprinter
S $=100 \mathrm{~m}-$ traveled distance;
$\mathrm{t}=9.83$ - the time required to cover the distance;
First we need to determine the average velocity of the sprinter:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{a}}=\frac{\mathrm{S}}{\mathrm{t}} \tag{1}
\end{equation*}
$$

Formula for the kinetic energy:

$$
\begin{gather*}
\mathrm{E}_{\mathrm{k}}=\frac{\mathrm{mv}_{\mathrm{a}}^{2}}{2} \tag{2}\\
\mathrm{E}_{\mathrm{k}}=\frac{\mathrm{m}\left(\frac{\mathrm{~S}}{\mathrm{t}}\right)^{2}}{2}=\frac{65 \mathrm{~kg} \cdot\left(\frac{100 \mathrm{~m}}{9.83 \mathrm{~s}}\right)^{2}}{2}=3363 \mathrm{~J}
\end{gather*}
$$

Answer: average kinetic energy of the sprinter is equal to 3363 J .

