Answer on Question \#40804, Physics, Mechanics

Question:

An upward force of $1.2 \times 10^{4} \mathrm{~N}$ acts on an elevator of mass $2.0 \times 10^{3} \mathrm{~kg}$.
Calculate the acceleration of the elevator. Take $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Answer:

Newton's second law of motion:
The acceleration of a body is directly proportional to, and in the same direction as, the net force acting on the body, and inversely proportional to its mass. Thus,

$$
F=m a
$$

where F is the net force acting on the object, m is the mass of the object and a is the acceleration of the object.

$$
F=F_{u p}-m g
$$

Therefore:

$$
a=\frac{F_{u p}-m g}{m}=\frac{F_{u p}}{m}-g=\left(\frac{1.2}{2} 10-9.8\right) \frac{m}{s^{2}}=-3.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Therefore acceleration directed downward.
Answer: $3.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

