Answer on Question \#40803, Physics, Mechanics

A ball of mass 50 g tied to the end of a 50 cm inextensible string is whirled around in a vertical circle. Find the tension in the string when the ball is at the top of the circle. Take $g=10 \mathrm{~m} \cdot \mathrm{~s}^{2}$.

Solution:

Given:
$m=50 \mathrm{~g}=50 \cdot 10^{-3} \mathrm{~kg}$,
$r=50 \mathrm{~cm}=0.5 \mathrm{~m}$,
$g=10 \mathrm{~m} / \mathrm{s}^{2}$,
$T=$?

If you have a ball on the end of a string and you swing it in a vertical circle the "centripetal force" or the forces causing the acceleration will be a combination of the tension from the string and gravity.

The Tension and Weight are the forces causing the acceleration. The ball is also moving in a circle so at the highest and lowest points

Tension+Weight=CentripetalForce.
Hence,

$$
\begin{gathered}
F_{n e t}=m a=\frac{m v^{2}}{r} \\
T+W=m a
\end{gathered}
$$

Thus,

$$
\begin{aligned}
T=m a-W & =\frac{m v^{2}}{r}-m g=m\left(\frac{v^{2}}{r}-g\right) \\
T & =m\left(\frac{v^{2}}{r}-g\right)
\end{aligned}
$$

The tension depends on speed of ball v.
You need to know the speed of ball.
If $v=\sqrt{g r}$, then $T=0$.
If $v>\sqrt{g r}$, then $T>0$.

Answer. $T=m\left(\frac{v^{2}}{r}-g\right)$.

