Answer on Question \#40734, Physics, Molecular Physics

One mole of oxygen at STP is adiabatically compressed to 5 atm. Calculate the final temperature. Also, calculate the work done on the gas. Take $\gamma=1.4$ and $\mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

Solution:

Given:
Standard temperature and pressure (informally abbreviated as STP) is
$\mathrm{T}_{1}=273.15 \mathrm{~K}$
$\mathrm{p}_{1}=100 \mathrm{kPa}$
$\mathrm{p}_{2}=5 \mathrm{~atm}=5 \cdot 101325 \mathrm{~Pa}=506.625 \mathrm{kPa}$
$\mathrm{T}_{1}=$?

An adiabatic process is one in which no heat is gained or lost by the system.
The adiabatic condition

$$
p V^{\gamma}=\text { const }
$$

where p is pressure, V is volume, and $\gamma=1.4$ is the adiabatic index.
An ideal gas can be characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them may be deduced from kinetic theory and is called the ideal gas law:

$$
p V=n R T
$$

where $\mathrm{n}=$ number of moles, $\mathrm{R}=$ universal gas constant $=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}$.
Hence:

$$
\begin{gathered}
V=\frac{n R T}{p} \\
p\left(\frac{n R T}{p}\right)^{\gamma}=\mathrm{const} \\
p^{1-\gamma} T^{\gamma}=\mathrm{const}
\end{gathered}
$$

Hence

$$
\begin{gathered}
p_{1}^{1-\gamma} T_{1}^{\gamma}=p_{2}^{1-\gamma} T_{2}^{\gamma} \\
T_{2}=T_{1}\left(\frac{p_{1}^{1-\gamma}}{p_{2}^{1-\gamma}}\right)^{\frac{1}{\gamma}} \\
T_{2}=273.15 \cdot\left(\frac{100^{1-1.4}}{506.625^{1-1.4}}\right)^{\frac{1}{1.4}}=434.25 \mathrm{~K}
\end{gathered}
$$

The work, done by the gas in adiabatic process is

$$
W_{b}=-\alpha n R T_{1}\left(\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right)
$$

where α is the number of degrees of freedom divided by two.
α is $5 / 2$ for diatomic gas such as oxygen.
Thus,

$$
W_{b}=-\frac{5}{2} \cdot 1 \cdot 8.31 \cdot 273.15 \cdot\left(\left(\frac{506.625}{100}\right)^{\frac{1.4-1}{1.4}}-1\right)=-3346.86 \mathrm{~J}
$$

And work done on the gas

$$
W=-W_{b}=3.35 \mathrm{~kJ}
$$

Answer. $T_{2}=434.25 \mathrm{~K}, W=3.35 \mathrm{~kJ}$.

