Answer on Question \#40732, Physics, Mechanics | Kinematics | Dynamics

Consider a system of three equal mass particles moving in a plane; their positions are given by ai vectors and bi vectors.

For particle $1, a 1=3 t^{\wedge} 2+4 b 1=0$
For particle $2, a 2=7 t+5 b 2=2$
For particle $3, a 3=2 t b 3=3 t+4$
Determine the position and velocity of the center of mass as functions of time

Solution

For the 'a' component of the center of mass's position vector is R_{a} where:

$$
R_{a}=\frac{\sum_{i} m_{i} a_{i}}{\sum_{i} m_{i}}=\frac{m a_{1}+m a_{2}+m a_{3}}{m+m+m}=\frac{1}{3}\left(a_{1}+a_{2}+a_{3}\right)=\frac{1}{3}\left(3 \mathrm{t}^{2}+4+7 \mathrm{t}+5+2 \mathrm{t}\right)=t^{2}+3 t+3
$$

The 'a' component of the center of mass's velocity, V_{a} is found by differentiating with respect to time

$$
V_{a}=\frac{d R_{a}}{d t}=2 t+3
$$

For the 'b' component of the center of mass's position vector is R_{b} where:

$$
R_{b}=\frac{\sum_{i} m_{i} b_{i}}{\sum_{i} m_{i}}=\frac{m b_{1}+m b_{2}+m b_{3}}{m+m+m}=\frac{1}{3}\left(b_{1}+b_{2}+b_{3}\right)=\frac{1}{3}(2+3 t+4)=t+2 .
$$

The 'b' component of the center of mass's velocity, V_{b} is found by differentiating with respect to time

$$
V_{b}=\frac{d R_{b}}{d t}=1
$$

The position of the center of mass:

$$
\vec{R}=\left(t^{2}+3 t+3\right) \vec{\imath}+(t+2) \vec{\jmath}
$$

The velocity of the center of mass:

$$
\vec{V}=(2 t+3) \vec{\imath}+\vec{\jmath} .
$$

