Answer on Question \#40696, Physics, Mechanics | Kinematics | Dynamics

A light thread with a mass m tied to its end is wound over a uniform solid cylinder of radius R and mass M and the system is set into motion at $\mathrm{t}=0$.

Obtain the angular velocity of the cylinder.

Solution:

Method 1:

Sum of the torques is equal to mass moment of inertia (I) times angular acceleration α

$$
m g R=\left(\frac{M R^{2}}{2}+m R^{2}\right) \alpha
$$

So,

$$
\alpha=\frac{2 m g}{\left(\frac{M}{2}+m\right) R}
$$

The angular velocity is

$$
\omega=\alpha t=\frac{2 m g t}{\left(\frac{M}{2}+m\right) R}=\frac{g t}{\left(1+\frac{M}{2 m}\right) R}
$$

Method 2:

The equation of motion is

$$
\begin{gathered}
m g-T=m a \\
M=I \alpha
\end{gathered}
$$

where torque $M=T R$, momentum of inertia $I=\frac{M R^{2}}{2}$, linear acceleration $a=R \alpha$.
From these equations we obtain:

$$
\begin{gathered}
T R=\frac{M R^{2}}{2} \alpha \\
T=\frac{M R}{2} \alpha \\
m g-\frac{M R}{2} \alpha=m R \alpha
\end{gathered}
$$

For angular acceleration

$$
\alpha=\frac{2 m g}{\left(\frac{M}{2}+m\right) R}
$$

The angular velocity is

$$
\omega=\alpha t=\frac{2 m g t}{\left(\frac{M}{2}+m\right) R}=\frac{g t}{\left(1+\frac{M}{2 m}\right) R}
$$

Answer. $\omega=\frac{g t}{\left(1+\frac{M}{2 m}\right) R}$

