An electric charge $q=10^{-3} \mu C$ is placed at the origin $(0,0)$ of $X-Y$ coordinate system. Two points A and B are situated at $(\sqrt{2}, \sqrt{2})$, and $(2,0)$ respectively. The potential difference between the points A and B will be :- (1)9 volt (2)Zero (3) 2 volt (4) 3.5 volt

Solution

The electric potential $V(r)$ generated by a point charge q is
$V(r)=\frac{q}{4 \pi \epsilon_{0} r}$,
where ϵ_{0} called the vacuum permittivity.
The distance between the points A and the origin is
$r_{A}=\sqrt{(\sqrt{2}-0)^{2}+(\sqrt{2}-0)^{2}}=2$.
The distance between the points B and the origin is
$r_{B}=\sqrt{(2-0)^{2}+(0-0)^{2}}=2$.
As the points A and B are at the same distance from the charge q, they are at same potential:

$$
V_{A}=\frac{q}{4 \pi \epsilon_{0} r_{A}}=\frac{q}{4 \pi \epsilon_{0} r_{B}}=V_{B}
$$

Hence potential difference between the points A and B is zero.
Answer: (2) Zero.

