Answer on Question \#40692, Physics, Electrodynamics

There are two capacitors A and B of capacitance $4 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ respectively. Their breakdown voltages are 300 V and 250 V respectively. If they are connected in series, the maximum potential difference which can be applied on their combination will be :-
(1) $400 \mathrm{~V}(2) 450 \mathrm{~V}(3) 500 \mathrm{~V}(4) 550 \mathrm{~V}$

Solution

The maximum charge that can be in the capacitor A :

$$
Q_{A M A X}=C_{A} V_{A M A X}=4 \cdot 10^{-6} \mathrm{~F} \cdot 300 \mathrm{~V}=1.2 \mathrm{mC}
$$

The maximum charge that can be in the capacitor B:

$$
Q_{B M A X}=C_{B} V_{B M A X}=6 \cdot 10^{-6} \mathrm{~F} \cdot 250 \mathrm{~V}=1.5 \mathrm{mC}
$$

When capacitors are connected in series their charges are equal. The maximum charge that can be in any capacitor is

$$
Q_{M A X}=Q_{A M A X}=1.2 \mathrm{mC}
$$

The maximum potential difference which can be applied on the capacitor A:

$$
V_{A}=\frac{Q_{A M A X}}{C_{A}}=300 \mathrm{~V}
$$

The maximum potential difference which can be applied on the capacitor B :

$$
V_{B}=\frac{Q_{A M A X}}{C_{B}}=\frac{1.2 \mathrm{mC}}{6 \cdot 10^{-6} \mathrm{~F}}=200 \mathrm{~V} .
$$

The maximum potential difference which can be applied on their combination will be

$$
V=V_{A}+V_{B}=300 \mathrm{~V}+200 \mathrm{~V}=500 \mathrm{~V}
$$

Answer: (3) 500 V .

