Answer on Question\#40690 - Physics - Mechanics

A body of mass 0.5 kg travels in a straight line with velocity $\mathrm{V}=\mathrm{ax} 3 / 2$ where $\mathrm{a}=5$ $\mathrm{m} 1 / 2 \mathrm{~s} 1$. Find the work done by the net force during its displacement from $\mathrm{x}=0$ to x $=2 \mathrm{~m}$ is :-
(1) 1.5 J
(2)50 J
(3) 10 J
(4) 100 J

Solution:

$\mathrm{m}=0.5 \mathrm{~kg}$ - mass of the body;
Here the unit of the constant a not correct, a should have dimension $\mathrm{L}^{\frac{1}{2}} \mathrm{~T}^{-1}$ and not LT^{-2}.
Velocity is given by $\left(a=5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$:

$$
\begin{equation*}
\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{ax}^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Let $\mathrm{a}^{\prime}=$ acceleration:

$$
\begin{equation*}
\mathrm{a}^{\prime}=\frac{\mathrm{dv}}{\mathrm{dt}} \Rightarrow \mathrm{a}^{\prime}=\frac{\mathrm{d}\left(\mathrm{ax}^{\frac{3}{2}}\right)}{\mathrm{dt}}=\frac{3 \mathrm{a}}{2} \mathrm{x}^{\frac{1}{2}} \frac{\mathrm{dx}}{\mathrm{dt}} \tag{2}
\end{equation*}
$$

(1) to (2):

$$
\begin{equation*}
a^{\prime}=\frac{3 a}{2} x^{\frac{1}{2}} a x^{\frac{3}{2}}=\frac{3 a^{2}}{2} x^{3} \tag{3}
\end{equation*}
$$

Newton's second Law for the body:

$$
\begin{gather*}
\mathrm{F}=\mathrm{ma}^{\prime} \tag{4}\\
\begin{array}{l}
(3) \operatorname{to}(4): \\
\mathrm{F}=\mathrm{m} \frac{3 \mathrm{a}^{2}}{2} \mathrm{x}^{3}
\end{array}
\end{gather*}
$$

The work done by the net force during its displacement:

$$
\begin{gather*}
W=\int_{\substack{x=x_{1} \\
x=x_{2}} d x}^{(5) t o(6):} \tag{6}\\
\begin{array}{rl}
W=\int_{x=x_{1}}^{x=x_{2}} m \\
m & 3 a^{2} \\
2 & x^{3} d x=m \\
& =\left.6 \cdot\left(5 \frac{3}{2} \frac{a^{2}}{s^{2}}\right)^{2} \cdot \frac{x^{4}}{4}\right|_{x=2} ^{x}=2.5 \mathrm{~kg}=75 \mathrm{~J}
\end{array}
\end{gather*}
$$

Answer: work done by the net force is equal to 75J

