Answer on Question \#40689, Physics, Mechanics

The acceleration of a particle is increasing linearly with time t as bt. The particle starts from origin with an initial velocity v_{o}. The distance travelled by the particle in time t will be?

Solution:

Given:
$a(t)=b t$

The derivative of a distance function represents instantaneous velocity and that the derivative of the velocity function represents instantaneous acceleration at a particular time.

Thus,

$$
a=\frac{d v}{d t}=b t
$$

Integrating, the equation

$$
\begin{gathered}
\int d v=\int b t d t \\
v=\frac{b t^{2}}{2}+C
\end{gathered}
$$

where C is constant of integration.
At $\mathrm{t}=0, v=v_{0}$, hence $C=v_{0}$ and equation becomes

$$
v=\frac{b t^{2}}{2}+v_{0}
$$

We have that

$$
v=\frac{d x}{d t}
$$

where x is distance

$$
\frac{d x}{d t}=\frac{b t^{2}}{2}+v_{0}
$$

Integrating

$$
\begin{gathered}
\int d x=\int\left(\frac{b t^{2}}{2}+v_{0}\right) d t \\
x=\frac{b}{2} \frac{t^{3}}{3}+v_{0} t+x_{0}
\end{gathered}
$$

where x_{0} is constant of integration.
At $\mathrm{t}=0, x=0$, hence $x_{0}=0$ and equation becomes

$$
x=\frac{b t^{3}}{6}+v_{0} t
$$

Answer. $x=\frac{b t^{3}}{6}+v_{0} t$.

