Answer on Question \#40684, Physics, Electrodynamics

Question:

TWO BEAMS OF PROTONS MOVING WITH VELOCITY V1 AND V2 ARE ALLOWED TO ENTER PARALLEL TO EACH OTHER IN A FIELD FREE REGION.THE RATIO OF MAGNETIC FORCE TO ELECTROSTATIC FORCE IS -

1. v1v2/c2
2. c2/v1v2
3. v1/v2
4. (v1v2)1/2/c

Answer:

Coulomb's law states that the electrical force between two charged objects is directly proportional to the product of their charges (and inversely proportional to the square of the distance between them):

$$
F_{e l}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}
$$

where ε_{0} is the permittivity of free space.
The magnetic interaction is also an inverse square law, and the law of Biot-Savart gives the field B at distance r due to a small length dL carrying current I :

$$
B=\frac{\mu_{0}}{4 \pi} \frac{I d L}{r^{2}}
$$

where μ_{0} is the permeability of space.
In this case, if the charge q covers the distance dL in time dt , then I dL may be replaced with $I \frac{d L}{d t}=q_{1} v_{1}$. In this case, the field and the velocity of the second charge are at right angles, so the force on the second charge has the magnitude $B q_{2} v_{2}$, which is here attractive and:

$$
F_{m}=\frac{\mu_{0}}{4 \pi} \frac{q_{1} q_{2} v_{1} v_{2}}{r^{2}}
$$

So, the ratio of forces:

$$
\frac{F_{m}}{F_{e l}}=v_{1} v_{2} \mu_{0} \varepsilon_{0}
$$

But $\mu_{0} \varepsilon_{0}=\frac{1}{c^{2}}$, therefore:

$$
\frac{F_{m}}{F_{e l}}=\frac{v_{1} v_{2}}{c^{2}}
$$

Answer: 1. $\frac{v_{1} v_{2}}{c^{2}}$

