Answer on Question \#40679, Physics, Mechanics | Kinematics | Dynamics

Question:

A bacteria of mass $2 \times 10-24 \mathrm{~kg}$ is rotated in a centrifuge at an angular speed of $4 p \times 103 \mathrm{rad} \mathrm{s}-1$. It is situated at a distance of 5 cm from the axis of rotation.
Calculate the effective value of g relative to the rotating frame of reference and the net centrifugal force on the bacteria.

Answer:

Centrifugal acceleration (effective value of g) equals:

$$
a=\omega^{2} r=7.9 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

where ω is angular speed, r is distance from the axis of rotation.
Net centrifugal force on the bacteria equals:

$$
F=m a=1.6 \cdot 10^{-17} N
$$

where m is mass, a is acceleration
Answer: $a=7.9 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, F=1.6 \cdot 10^{-17} \mathrm{~N}$

