Answer on Question \#40678, Physics, Optics

A plane mirror is moving with velocity $4 \tilde{A}+5 j+8 k$. A point object in front of the mirror moves with a velocity $3 \tilde{A}+4 j+5 k$. Here k is along the normal to the plane mirror and facing towards the object. The velocity of the image is $1 .-3 \tilde{A}+4 j+5 k 2.7 \tilde{A}+9 j+11 k 3.3 \tilde{A}+4 j+11 k 4 .-3 \tilde{A}-4 j+11 k$

Solution

$\overrightarrow{V_{M G}}$ - a velocity of plane mirror, $\overrightarrow{V_{O G}}$ - a velocity of point object, $\overrightarrow{V_{I G}}$ - a velocity of the image.

Concept of perpendicular component of velocity of image in the plane mirror:

$$
\left(V_{M G}\right)_{\perp}=\frac{\left(V_{O G}\right)_{\perp}+\left(V_{I G}\right)_{\perp}}{2} .
$$

For the perpendicular z component:

$$
\left(V_{M G}\right)_{z}=\frac{\left(V_{O G}\right)_{z}+\left(V_{I G}\right)_{z}}{2} \rightarrow 8=\frac{5+\left(V_{I G}\right)_{z}}{2} .
$$

So

$$
\left(V_{I G}\right)_{z}=11 .
$$

Concept of parallel components of velocity of image in the plane mirror:

$$
\left(V_{O G}\right)_{\|}=\left(V_{I G}\right)_{\|} .
$$

x and y component of velocity of image will remain the same as the velocity of object.
The velocity of the image is

$$
\overrightarrow{V_{I G}}=3 \overrightarrow{\tilde{A}}+4 \overrightarrow{\mathrm{\jmath}}+11 \overrightarrow{\mathrm{k}} .
$$

Answer: 3. $\mathbf{3} \overrightarrow{\mathrm{A}}+\mathbf{4} \overrightarrow{\mathbf{j}}+\mathbf{1 1} \overrightarrow{\mathbf{k}}$.

