Answer on Question \#40667, Physics, Electromagnetism

TWO CONCENTRIC SPHERES OF RADII R AND r HAVE SIMILAR CHARGES WITH EQUAL SURFACE CHARGE DENSITIES (σ). WHAT IS THE ELECTRIC POTENTIAL AT THEIR COMMON CENTRES?

1. $\sigma / \epsilon 0(R+r)$ 2. $\sigma / \epsilon 0(R+r) 3 . \sigma R / \epsilon 04$. $\sigma r / \epsilon 0$

Solution

Let q_{1} and q_{2} be the respective charges distributed over two concentric spheres of radii r and R.
As surface densities are given to be equal, therefore $\sigma_{1}=\sigma_{2}=\sigma$ or

$$
\sigma=\frac{q_{1}}{4 \pi r^{2}}=\frac{q_{2}}{4 \pi R^{2}} .
$$

The potential V_{1} at common center due to charge q_{1} is given by

$$
V_{1}=\frac{q_{1}}{4 \pi \epsilon_{0} r}=\frac{\sigma r}{\epsilon_{0}} .
$$

The potential V_{2} at common center due to charge q_{1} is given by

$$
V_{2}=\frac{q_{2}}{4 \pi \epsilon_{0} R}=\frac{\sigma R}{\epsilon_{0}} .
$$

Net potential at common center,

$$
V=V_{1}+V_{2}=\frac{\sigma r}{\epsilon_{0}}+\frac{\sigma R}{\epsilon_{0}}=\frac{\sigma(r+R)}{\epsilon_{0}} .
$$

Answer: $\frac{\sigma(r+R)}{\epsilon_{0}}$.

