Answer on Question \#40591, Physics, Mechanics | Kinematics | Dynamics

Establish the differential equation for damped harmonic oscillator and obtain its solution. Show that the damped oscillator will exhibit non-oscillatory behavior if the damping is heavy.

Solution

An ideal mass-spring-damper system with mass m, spring constant k and viscous damper of damping coefficient c is subject to an oscillatory force

$$
F_{\mathrm{osc}}=-k x
$$

and a damping force

$$
F_{\mathrm{d}}=-c v=-c \frac{d x}{d t}
$$

Applying Newton's second law, the total force F on the body is

$$
F=m a=m \frac{d^{2} x}{d t^{2}}
$$

where a is the acceleration of the mass and x is the displacement of the mass relative to a fixed point of reference.

Since $F=F_{\text {osc }}+F_{d}$

$$
m \frac{d^{2} x}{d t^{2}}=-k x-c \frac{d x}{d t}
$$

This differential equation may be rearranged into
$\frac{d^{2} x}{d t^{2}}+\frac{c}{m} \frac{d x}{d t}+\frac{k}{m} x=0$ or $\left\{\frac{d^{2}}{d t^{2}}+\frac{c}{m} \frac{d}{d t}+\frac{k}{m}\right\} x=0$.
In this differential equation $\frac{d}{d t}=D$ is differential operator. So

$$
\left\{D^{2}+\frac{c}{m} D+\frac{k}{m}\right\} x=0
$$

Let's complete the square

$$
\left\{D^{2}+\frac{c}{m} D+\frac{k}{m}\right\} x=\left\{\left(D+\frac{c}{2 m}\right)^{2}+\left(\frac{k}{m}-\left(\frac{c}{2 m}\right)^{2}\right)\right\} x=0
$$

We can set

$$
\omega^{2}=\frac{k}{m}-\left(\frac{c}{2 m}\right)^{2}
$$

We are assuming here that $\omega^{2} \geq 0$.
Now our differential equation reads
$\left\{\left(\frac{d}{d t}+\frac{c}{2 m}\right)^{2}+\omega^{2}\right\} x=0$ or $\left(\frac{d}{d t}+\frac{c}{2 m}\right)^{2} x=-\omega^{2} x$.
Let's take the square root of both sides of this equation

$$
\left(\frac{d}{d t}+\frac{c}{2 m}\right) x= \pm i \omega x
$$

Now we have two first order equations to solve:

$$
\frac{d x}{d t}=\left(-\frac{c}{2 m} \pm i \omega\right) x,
$$

which have the solution

$$
x=e^{-\frac{c}{2 m} t}(A \sin \omega t+B \cos \omega t) .
$$

It is the general form of the solution representing damped oscillations with damped frequency
$\omega=\sqrt{\frac{k}{m}-\left(\frac{c}{2 m}\right)^{2}}$.
The overdamped case (damping is heavy) occurs when $\omega_{0}=\frac{k}{m}<\frac{c}{2 m}$. Now the system doesn't oscillate at all; the motion simply dies away. This is characterised by a solution which decays exponentially.

Let's rewrite our equation

$$
\left\{\left(\frac{d}{d t}+\frac{c}{2 m}\right)^{2}-\omega^{2}\right\} x=0
$$

where $\omega^{2}=\left(\frac{c}{2 m}\right)^{2}-\frac{k}{m}>0$.
Then upon square rooting our equation we obtain

$$
\left(\frac{d}{d t}+\frac{c}{2 m}\right) x= \pm \omega x,
$$

which have a solution

$$
x=C e^{\left(-\frac{c}{2 m}+\omega\right) t}+D e^{\left(-\frac{c}{2 m}-\omega\right) t} .
$$

This solution represents a damped motion without oscillations.

