

Answer on Question #40583 – Physics –Mechanics | Kinematics | Dynamics

1. A projectile is shot from the ground at an angle of 60 degrees with respect to the horizontal, and it lands on the ground 5 seconds later. Find: a) the horizontal component of initial velocity; b) the vertical component of initial velocity; c) the magnitude and the direction of velocity, when the projectile hits the ground.

$$\begin{array}{l} \alpha = 60^\circ \\ t_1 = 5 \text{ s} \\ \hline v_{0x}, v_{0y}, v_1, \alpha_1 - ? \end{array}$$

Solution.

Let denote $y = v_0 \sin \alpha \cdot t - \frac{gt^2}{2}$ as initial velocity of the projectile.

In the horizontal direction the movement is with the constant velocity:

$$v_x = v_0 \cos \alpha, \quad x = v_0 \cos \alpha \cdot t.$$

In vertical direction the movement is with the constant acceleration g :

$$v_y = v_0 \sin \alpha - gt, \quad y = v_0 \sin \alpha \cdot t - \frac{gt^2}{2}.$$

At the moment $t = t_1$, the y -coordinate is zero.

$$y = 0, \quad 0 = v_0 \sin \alpha \cdot t_1 - \frac{gt_1^2}{2}, \quad v_0 = \frac{gt_1}{2 \sin \alpha}.$$

So, the horizontal and vertical components of the initial velocity are:

$$\boxed{v_{0x} = \frac{gt_1}{2} \operatorname{ctg} \alpha}, \quad \boxed{v_{0y} = \frac{gt_1}{2}}.$$

The magnitude and the direction of the final velocity are:

$$v_1 = \sqrt{v_{1x}^2 + v_{1y}^2} = \sqrt{\left(\frac{gt_1}{2} \operatorname{ctg} \alpha\right)^2 + \left(\frac{gt_1}{2} - g \cdot t_1\right)^2}, \quad \boxed{v_1 = \frac{gt_1}{2 \sin \alpha}}.$$

$$\alpha_1 = \operatorname{arctg} \frac{v_{1y}}{v_{1x}} = \operatorname{arctg} \frac{\frac{gt_1}{2} - g \cdot t_1}{\frac{gt_1}{2} \operatorname{ctg} \alpha}, \quad \boxed{\alpha_1 = -\alpha}.$$

Let check the dimensions.

$$[v_{0x}] = [v_{0y}] = [v_1] = \frac{m}{s^2} \cdot s = \frac{m}{s}, \quad [\alpha_1] = {}^\circ.$$

Let evaluate the quantities.

$$v_{0x} = \frac{9.8 \cdot 5}{2} \cdot \operatorname{ctg} 60^\circ = 14.1 \left(\frac{m}{s} \right), \quad v_{0y} = \frac{9.8 \cdot 5}{2} = 24.5 \left(\frac{m}{s} \right), \quad v_1 = \frac{9.8 \cdot 5}{2 \cdot \sin 60^\circ} = 28.3 \left(\frac{m}{s} \right).$$

$$\text{Answer: a) } 14.1 \frac{m}{s}; \quad \text{b) } 24.5 \frac{m}{s}; \quad \text{c) } 28.3 \frac{m}{s}, -60^\circ.$$