Answer on Question \#40557 - Physics - Electrodynamics

Question: charge Q is uniformly distributed over a half ring of radius R. The electric field at the center of the ring is

1) $\frac{Q}{2 \pi^{2} \epsilon R^{2}}$;
2) $\frac{Q}{2 \pi \epsilon R^{2}}$.

Solution: charge $d q=\frac{Q}{\pi R} d l(d l=R d \theta)$ creates in the center of the ring the electric field

$$
d E=\frac{d q}{4 \pi \epsilon R^{2}}
$$

This field has two components

$$
d E_{x}=d E \cdot \cos \theta, \quad d E_{y}=d E \cdot \sin \theta
$$

After integrating, we obtain the value of the electric field in the center

$$
\begin{gathered}
E_{x}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d E \cdot \cos \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d q}{4 \pi \epsilon R^{2}} \cdot \cos \theta=\frac{Q}{4 \pi^{2} \epsilon R^{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta d \theta=\frac{Q}{2 \pi^{2} \epsilon R^{2}} ; \\
E_{y}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d E \cdot \sin \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d q}{4 \pi \epsilon R^{2}} \cdot \sin \theta=\frac{Q}{4 \pi^{2} \epsilon R^{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin \theta d \theta=0 ;
\end{gathered}
$$

Finally, the resulting value is

$$
E=E_{x}=\frac{Q}{2 \pi^{2} \epsilon R^{2}}
$$

Answer: the electric field in the center is

1) $E=\frac{Q}{2 \pi^{2} \epsilon R^{2}}$.
