A 10Ω and a 20Ω resistances are connected in parallel, another resistance of 5Ω is connected in series with the two. If the supply voltage is 48 V , what is the current through the 10Ω resistance?

Solution

Total resistance is

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}+R_{3}
$$

where $R_{1}=10 \Omega, R_{2}=20 \Omega$ and $R_{3}=5 \Omega$. So

$$
R=\frac{10 \cdot 20}{10+20}+5=11.7 \Omega
$$

Total current is

$$
I=\frac{U}{R}=\frac{48 \mathrm{~V}}{\frac{35}{3} \Omega}=4.1 \mathrm{~A}
$$

But the total current is equal the sum of currents through a 10Ω and a 20Ω resistances:

$$
I=I_{1}+I_{2}
$$

In consequence of parallel connection of 10Ω and a 20Ω resistances the voltages across them are equal each other:

$$
I_{1} R_{1}=I_{2} R_{2}
$$

Thus

$$
I=I_{1}+\frac{I_{1} R_{1}}{R_{2}}
$$

The current through the 10Ω resistance:

$$
I_{1}=\frac{I}{1+\frac{R_{1}}{R_{2}}}=\frac{4.1}{1+\frac{10}{20}}=2.7 A
$$

Answer: 2. 7A.

