Find the current in a circuit consisting of a coil and a capacitor in series, if the applied voltage is $110 \mathrm{~V}, 60 \mathrm{~Hz}$; The inductance of the coil is 0.8 H ; The resistance of the coil is 50 ohms ; and the capacitance of the capacitor is $8 \mu \mathrm{~F} . \mathrm{b}$) find the power used in the circuit.

Solution

Reactance of a circuit is

$$
X_{L}-X_{C}=2 \pi f L-\frac{1}{2 \pi f C}=2 \pi \cdot 60 \cdot 0.8-\frac{1}{2 \pi \cdot 60 \cdot 8 \cdot 10^{-6}}=301.59-331.59=-30 \Omega
$$

Impedance,

$$
Z=R+j\left(X_{L}-X_{C}\right)=50-30 j=58.3 \angle-31^{\circ} \Omega .
$$

The current in a circuit

$$
I=\frac{V}{Z}=\frac{110 \angle 0^{\circ}}{58.3 \angle-31^{\circ}}=1.89 \angle 31^{\circ} \mathrm{A}
$$

The real power in the circuit:

$$
P=V I \cos \theta=110 \cdot 1.89 \cdot \cos 31^{\circ}=178 \mathrm{~W}
$$

