Answer on Question \#40547, Electric Circuits

A series resistance-capacitance ($\mathrm{R}-\mathrm{C}$) circuit is connected to a $230 \mathrm{~V}, 60 \mathrm{~Hz}$ source. If the power taken by the circuit is $4,800 \mathrm{~W}$ and the voltage drop across the resistor is 115 V , calculate the capacitance of the capacitor.

Solution

$U=230 \mathrm{~V}$ - total voltage, $U_{R}=115 \mathrm{~V}$ - voltage drop across the resistor, $f=60 \mathrm{~Hz}$ - frequency, $P=$ $4800 W$ - power taken by the circuit.

Voltage across the capacitor:

$$
U_{C}=\sqrt{U^{2}-U_{R}^{2}}
$$

In this circuit only the resistor can dissipate power:

$$
P=\frac{U_{R}{ }^{2}}{R} \rightarrow R=\frac{U_{R}{ }^{2}}{P} .
$$

The ratio of the impedances will be the same as the voltages (currents are equal for series connection):

$$
\frac{X_{C}}{R}=\frac{U_{c}}{U_{R}} \rightarrow X_{C}=\frac{U_{c}}{U_{R}} R=\frac{\sqrt{U^{2}-U_{R}^{2}}}{U_{R}} \cdot \frac{U_{R}{ }^{2}}{P}=\frac{U_{R}}{P} \sqrt{U^{2}-U_{R}^{2}}
$$

But

$$
X_{C}=\frac{1}{2 \pi f C}
$$

The capacitance of the capacitor:

$$
C=\frac{P}{2 \pi f U_{R} \sqrt{U^{2}-U_{R}^{2}}}=\frac{4800}{2 \pi \cdot 60 \cdot 115 \cdot \sqrt{230^{2}-115^{2}}}=556 \mu \mathrm{~F}
$$

Answer: $556 \mu \mathrm{~F}$.

