Answer on Question\#40535, Physics, Mechanics

What amount of water in kg would be lifted by a motor having power 0.5 hp at the height of 5 m in 98 seconds?

Solution:

The motor provides the force that lifts the mass up a height h against the force of gravity. Horsepower is a unit of power, which is work performed per unit time, $\mathrm{P}=\mathrm{W} / \mathrm{t}$. If you know the power and the amount of time, the work that's performed by the motor is given by:

$$
W=P \cdot t
$$

where $\mathrm{P}=$ power and $\mathrm{t}=$ time.

Since the water is lifted through a height of $h=5 \mathrm{~m}$, work done is equal to the potential energy $\mathrm{PE}=\mathrm{mgh}$.

$$
W=m g h
$$

So,

$$
P t=m g h
$$

Solve for mass (m):

$$
m=\frac{P t}{g h}
$$

One electrical horsepower is equal to 746 watts, $\mathrm{g}=$ the acceleration due to gravity at the surface of the Earth ($9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Thus,

$$
m=\frac{P t}{g h}=\frac{0.5 \cdot 746 \cdot 98}{9.8 \cdot 5}=746 \mathrm{~kg}
$$

Answer. $m=746 \mathrm{~kg}$.

