Answer on Question \#40446

Physics - Mechanics | Kinematics | Dynamics

Question:

An object is tracked by a radar station and found to have a position vector by $r=(3500-160 \mathrm{t}) \mathrm{i}+2700 \mathrm{j}+$ 300 k , with r in m and t in sec. The radar station's x -axis points east, its y -axis north and its z -axis vertically up. If the object is a $250-\mathrm{kg}$ missile warhead, what are (a) its linear momentum (b) its direction of motion (c) its net force on it.

Solution:

The linear momentum is

$$
\vec{p}=m \vec{v},
$$

where $m=250 \mathrm{~kg}$ is mass of the object and v is its velocity.

$$
\vec{v}=\frac{d \vec{r}}{d t}=-160 \vec{\imath} .
$$

Thus,

$$
\vec{p}=-160 \mathrm{~m} \vec{\imath}=-40,000 \vec{\imath} \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}
$$

Because only the X coordinate of the object is changed in time and X axis points East, the object moves to the East.

The net force $F_{n e t}=m a$ acting on the object is zero, because the acceleration

$$
a=\frac{d \vec{v}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}=0 .
$$

Answer:
a) $\vec{p}=-40,000 \vec{\imath} \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}$
b) East
c) 0 .

