Second Newton's law :

$$
\left\{\begin{array}{c}
O X: \frac{m v^{2}}{R} \cos (\alpha)+m g \sin (\alpha)=F_{f r}=\mu N \tag{1}\\
O Y: m g \cos (\alpha)=N+\frac{m v^{2}}{R} \sin (\alpha)
\end{array}\right.
$$

$F_{f r}=4000 N-$ friction force
μ-coefficient of friction
v - maximum speed
$R=300 \mathrm{~m}$ - radius of curvature
$\alpha=5$ degrees
m - mass of the car
N - force of normal reaction of the surface
$\frac{v^{2}}{R}$ - centripetal acceleration
g - free fall acceleration
The input data given is not enough to solve this problem. Let we assume that the mass of the car m is given.

Then, from equation (1)

$$
v=\sqrt{\frac{F_{f r}-m g \sin (\alpha)}{m \cos (\alpha)}} R
$$

The average mass of the car is about $m=1500 \mathrm{~kg}$. Then

$$
v=23,3 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer:

$$
v=\sqrt{\frac{F_{f r}-m g \sin (\alpha)}{m \cos (\alpha)} R}
$$

For $m=1500 \mathrm{~kg} \quad=>\quad v=23,3 \frac{\mathrm{~m}}{\mathrm{~s}}$

