Answer on Question \#40391, Physics, Electric Circuits

two charges(-q)each are separated by a distance 2d.A third charge q of mass m placed at the mid-point is displaced slightly by a distance $\mathrm{x}(x \ll d)$ perpendicular to the line joining the two fixed charges .show that charge q will perform SHM

Solution

The net force on the q charge is $\vec{F}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}$. Since $F_{1}=F_{2}=\frac{k q(-q)}{r^{2}}=-\frac{k q^{2}}{r^{2}}$, with $r=\sqrt{x^{2}+d^{2}}$ and from the symmetry $\theta_{1}=\theta_{2}=\theta$ so the y-components of $\overrightarrow{F_{1}}$ and $\overrightarrow{F_{2}}$ cancel. So the magnitude of \vec{F} is $F=$ $F_{1} \cos \theta+F_{2} \cos \theta$ with $\cos \theta=\frac{x}{r}$. Therefore

$$
F_{x}=-F=-2 F_{1} \cos \theta=-2\left(\frac{k q^{2}}{r^{2}}\right) \frac{x}{r} .
$$

Now,

$$
m a_{x}=F_{x} \rightarrow a_{x}=\frac{-2 k q^{2} x}{m\left(\sqrt{x^{2}+d^{2}}\right)^{3}} .
$$

If $x \ll d$

$$
a_{x} \approx \frac{-2 k q^{2}}{m(d)^{3}} x=-\frac{2 k q^{2}}{m d^{3}} x=-\omega^{2} x
$$

This is in the form for Simple Harmonic Motion with $\omega=\sqrt{\frac{2 k q^{2}}{m d^{3}}}$.

