Answer on Question \#40357, Physics, Mechanics | Kinematics | Dynamics

Question:

A force of $2 \vec{i}+7 \vec{j} \mathrm{~N}$ acts on a body of mass 5 kg for 10 seconds. The body was initially moving with constant velocity of $i \vec{i}-2 \vec{j} \mathrm{~m} / \mathrm{s}$. Find the final velocity of the body in m / s, in vector form.

Answer:

Newton's second law of motion can be expressed in equation form as follows:

$$
\sum \vec{F}=m \vec{a}
$$

where m is mass of the body, F is force, a is acceleration.
Therefore:

$$
\vec{a}=\frac{\vec{F}}{m}
$$

Velocity equals:

$$
\vec{v}=\vec{v}_{0}+\vec{a} t=\vec{\imath}-2 \vec{\jmath}+\frac{2 \vec{\imath}+7 \vec{\jmath}}{5} 10=\vec{\imath}(1+4)+\vec{\jmath}(-2+14)=5 \vec{\imath}+12 \vec{\jmath}
$$

Answer: $5 \vec{\imath}+12 \vec{\jmath}$

