Answer on Question \#40331 - Physics - Electrodynamics

1. A charged particle is moving in a circular orbit of radius 6 cm with a uniform speed of $3 \times 10^{\wedge} 6 \mathrm{~m} / \mathrm{s}$ under action of a uniform magnetic field $2 \times 10^{\wedge}-4 \mathrm{wb} / \mathrm{m}$ at right angle to the plane of the orbit. The charge to mass ratio of the particle is: A) $5 \times 10^{\wedge} 9 \mathrm{C} / \mathrm{kg}$; B) $2.5 \times 10^{\wedge} 11 \mathrm{C} / \mathrm{kg}$; C) $5 \mathrm{x} 10^{\wedge} 11 \mathrm{C} / \mathrm{kg}$; D) $5 \times 10^{\wedge} 12 \mathrm{C} / \mathrm{kg}$.
$r=0.06 m$
$v=3 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}$

Solution.

Let write down the second law of Newton for the particle, moving in the $B=2 \cdot 10^{-4} \frac{w b}{m}$ where the acceleration in a circular orbit is $a=\frac{v^{2}}{r}$ and the Lorentz force is | $\alpha=90^{\circ}$ |
| :--- |
| $\underline{q}-?$ |$F=q v B \sin \alpha$.

$$
\text { So, } m \frac{v^{2}}{r}=q v B \sin \alpha
$$

The charge to mass ratio of the particle is: $\frac{q}{m}=\frac{v}{r B \sin \alpha}$.
Let check the dimension.
$\left[\frac{q}{m}\right]=\frac{m / s}{m \cdot w b}=\frac{1}{w b \cdot s}=\frac{C}{k g}$.
Let evaluate the quantity.
$\frac{q}{m}=\frac{3 \cdot 10^{6}}{0.06 \cdot 2 \cdot 10^{-4} \cdot \sin 90^{0}}=2.5 \cdot 10^{11}\left(\frac{\mathrm{C}}{\mathrm{kg}}\right)$.
Answer: B.

