Answer on Question \#40207 - Physics - Physics, Mechanics | Kinematics | Dynamics

1. A ball of mass 1.5 kg rolling to the right with a speed of $3.6 \mathrm{~ms}^{\wedge}-1$ collides head-on with a spring with a spring constant of $2.0 \mathrm{Nm}^{\wedge}-2$. Determine the maximum compression of the spring and the speed of the ball when the compression of the spring is 0.10 m .
$m=1.5 \mathrm{~kg}$
$v_{0}=3.6 \frac{\mathrm{~m}}{\mathrm{~s}}$
$k=2 \frac{\mathrm{~N}}{\mathrm{~m}}$

Solution.

The initial kinetic energy of the ball can be found according to Steiner's theorem: $W=\frac{I \omega^{2}}{2}+m r^{2}$, where $I=\frac{2 m r^{2}}{5}$ is momentum of inertia regarding to the axis across the center of the ball, $\omega=\frac{v_{0}}{r}$ is the initial angular speed of the ball.

So, $W=\frac{6 m v_{0}{ }^{2}}{5}$.
As the total mechanical energy of the system is conserved, then

$$
W=\frac{k x^{2}}{2}+\frac{6 m v^{2}}{5}
$$

where x and x are the compression of the spring and the velocity of the ball at any moment.
The maximum compression of the spring can be found assuming $v=0$:
$\frac{6 m v_{0}{ }^{2}}{5}=\frac{k x_{\max }{ }^{2}}{2}, x_{\max }=2 v_{0} \sqrt{\frac{3 m}{5 k}}$.
The speed of the ball, when the compression of the spring is x_{1} :

$$
\frac{6 m v_{0}^{2}}{5}=\frac{k x_{1}^{2}}{2}+\frac{6 m v_{1}^{2}}{5}, \quad v_{1}=\sqrt{v_{0}^{2}-\frac{5 k x_{1}^{2}}{12 m}} \text {. }
$$

Let check the dimensions:
$\left[x_{\max }\right]=\frac{m}{s} \cdot \sqrt{\frac{\mathrm{~kg}}{\mathrm{~N}}}=\frac{\mathrm{m}}{\mathrm{s}} \cdot \sqrt{\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{kg} \cdot \frac{\mathrm{m}}{\mathrm{s}^{2}}}}=m, \quad\left[v_{1}\right]=\sqrt{\left(\frac{\mathrm{m}}{\mathrm{s}}\right)^{2}-\frac{\frac{N}{m} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}}}=\sqrt{\frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}-\frac{\left(\mathrm{kg} \cdot \frac{\mathrm{m}}{\mathrm{s}^{2}}\right) \cdot \mathrm{m}}{\mathrm{kg}}}=\frac{\mathrm{m}}{\mathrm{s}}$.
Let evaluate the quantities:

$$
x_{\max }=2 \cdot 3.6 \cdot \sqrt{\frac{3 \cdot 1.5}{5 \cdot 2}}=4.83(m), \quad v_{1}=\sqrt{3.6^{2}-\frac{5 \cdot 2 \cdot 0.1^{2}}{12 \cdot 1.5}}=3.60\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right) .
$$

Answer: $4.83 \mathrm{~m}, \quad 3.60 \frac{\mathrm{~m}}{\mathrm{~s}}$.
http://www.AssignmentExpert.com/

