Answer on Question\#40194, Physics, Electric Circuits

Question:

a piece of wire 10.0 meters long and 0.500 millimetre in diameter has a resistance of 2.5 ohms. What length of the wire of the same material 0.300 millimetre in diameter will have a resistance of 3.00 ohms?

Answer:

The resistance of a given object depends primarily on two factors: What material it is made of, and its shape. For a given material, the resistance is inversely proportional to the cross-sectional area. Also, for a given material, the resistance is proportional to the length. The resistance R of a conductor of uniform cross section, therefore, can be computed as

$$
R=\frac{\rho l}{A}
$$

where l is the length of the conductor, measured in metres [m], A is the crosssection area of the conductor measured in square metres $\left[\mathrm{m}^{2}\right]$, and ρ (rho) is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres $(\Omega \cdot m)$.

Therefore:

$$
\begin{aligned}
& R_{1}=\frac{\rho l_{1}}{A_{1}} \\
& R_{2}=\frac{\rho l_{2}}{A_{2}}
\end{aligned}
$$

Or:

$$
\frac{R_{2}}{R_{1}}=\frac{l_{2} A_{1}}{l_{1} A_{2}}
$$

Finally:

$$
l_{2}=l_{1} \frac{R_{2}}{R_{1}} \frac{A_{2}}{A_{1}}=l_{1} \frac{R_{2}}{R_{1}} \frac{d_{2}^{2}}{d_{1}^{2}}=10 \frac{3}{2.5} \frac{0.5^{2}}{0.3^{2}}=4.32 \mathrm{~m}
$$

Answer: 4.32 m

