Answer on Question\#40189 - Physics - Mechanics

Figure 2 A new car is tested on a 150 m radius track. If the car speeds up at an acceleration of $1.5 \mathrm{~m} / \mathrm{s} 2$, how long after starting is the magnitude of its centripetal acceleration equal to the tangential acceleration?

Solution:

Tangential acceleration of the car is equal to

$$
\mathrm{a}_{\mathrm{t}}=1.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Formula for the centripetal acceleration:

$$
\mathrm{a}_{\mathrm{c}}=\frac{\mathrm{V}^{2}}{\mathrm{R}}
$$

Centripetal acceleration = tangential acceleration:

$$
\begin{gather*}
\frac{V^{2}}{R}=a_{t} \\
V^{2}=a_{t} \cdot R \\
V=\sqrt{a_{t} \cdot R} \tag{1}
\end{gather*}
$$

Rate equation for the car:

$$
\begin{gathered}
V=a_{t} t \Rightarrow \\
t=\frac{V}{a_{t}} \\
t=\frac{\sqrt{a_{t} \cdot R}}{a_{t}}=\sqrt{\frac{R}{a_{t}}}=\sqrt{\frac{150 \mathrm{~m}}{1.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}}=10 \mathrm{~s}
\end{gathered}
$$

Answer: magnitude of its centripetal acceleration will be equal to the tangential acceleration after 10 s starting.

