Answer on Question\#40141, Physics, Astronomy | Astrophysics

a) The comet Encke has an aphelion distance of $6.1 \times 10^{\wedge} 11 \mathrm{~m}$ and perihelion distance of $5.1 \times 10^{\wedge} 11 \mathrm{~m}$. The mass of the sun is $2.0 \times 10^{\wedge} 30 \mathrm{~kg}$. Find the speed of the comet at the perihelion and the aphelion.

Solution:

a) Given:

$$
\begin{aligned}
& \mathrm{M}=2.0 \times 10^{30} \mathrm{~kg} \\
& \mathrm{a}=\text { aphelion }=6.1 \times 10^{11} \mathrm{~m} \\
& \mathrm{~b}=\text { perihelion }=5.1 \times 10^{11} \mathrm{~m} \\
& \mathrm{v}_{\mathrm{a}}=?, \mathrm{v}_{\mathrm{b}}=?
\end{aligned}
$$

The total mechanical energy (ME) of a comet, or any orbiting body, is the sum of its kinetic energy (KE) and its gravitational potential energy (PE):

$$
\mathrm{ME}=\mathrm{KE}+\mathrm{PE}=\text { constant }
$$

$a=$ distance at aphelion
$b=$ distance at perihelion
$b=$ distance at perihelion

$$
\mathrm{ME}=\frac{m v^{2}}{2}-m \frac{G M}{r}=\mathrm{constant}
$$

where M is the mass of the Sun, m is the mass of the comet, r is its instantaneous distance from the Sun and $G\left(6.673 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)$ is the universal gravitational constant.

When $P E>K E$ the comet will have an elliptical orbit with its total mechanical energy given by

$$
\begin{aligned}
\mathrm{ME} & =-m \frac{G M}{2 s} \\
-m \frac{G M}{2 s} & =\frac{m v^{2}}{2}-m \frac{G M}{r}
\end{aligned}
$$

The comet has a velocity given by

$$
v=\sqrt{\frac{G M}{s}\left(\frac{2 s}{r}-1\right)}
$$

where s is the mean radius of its orbit (sometimes referred to as the semi-major axis).
The aphelion + perihelion $=$ the major axis.

$$
s=\frac{a+b}{2}=5.6 \times 10^{11} \mathrm{~m}
$$

The speed of the comet at the aphelion
$v_{a}=\sqrt{\frac{G M}{s}\left(\frac{2 s}{a}-1\right)}=\sqrt{\frac{6.673 \cdot 10^{-11} \cdot 2 \cdot 10^{30}}{5.6 \cdot 10^{11}}\left(\frac{2 \cdot 5.6}{6.1}-1\right)}=14115.7 \frac{\mathrm{~m}}{\mathrm{~s}}=14.1 \mathrm{~km} / \mathrm{s}$
The speed of the comet at the perihelion
$v_{b}=\sqrt{\frac{G M}{s}\left(\frac{2 s}{b}-1\right)}=\sqrt{\frac{6.673 \cdot 10^{-11} \cdot 2 \cdot 10^{30}}{5.6 \cdot 10^{11}}\left(\frac{2 \cdot 5.6}{5.1}-1\right)}=16883.5 \frac{\mathrm{~m}}{\mathrm{~s}}=16.9 \mathrm{~km} / \mathrm{s}$
b) The planet Earth is $1.5 \times 10^{\wedge} 11 \mathrm{~m}$ from the sun and orbits the sun in one year. The planet Pluto takes 248 years to orbit the sun. How far is Pluto from the sun?

Solution:

The third Kepler law captures the relationship between the distance of planets from the Sun, and their orbital periods.
"The square of the orbital period of a planet is directly proportional to the cube of the semimajor axis of its orbit."

Mathematically, the law says that the expression $\mathrm{P}^{2} / \mathrm{a}^{3}$ has the same value for all the planets in the solar system, where P is period and a is distance from the Sun.

$$
\begin{gathered}
\frac{P_{\text {Earth }}^{2}}{a_{\text {Earth }}^{3}}=\frac{P_{\text {Pluto }}^{2}}{a_{\text {Pluto }}^{3}} \\
a_{\text {Pluto }}=a_{\text {Earth }} \sqrt[3]{\frac{P_{\text {Pluto }}^{2}}{P_{\text {Earth }}^{2}}} \\
a_{\text {Pluto }}=1.5 \cdot 10^{11^{3}} \sqrt{\frac{248^{2}}{1^{2}}}=1.5 \cdot 10^{11} \cdot 39.473=59.21 \cdot 10^{11} \mathrm{~m}
\end{gathered}
$$

Answer. a) $\mathrm{v}_{\mathrm{a}}=14.1 \mathrm{~km} / \mathrm{s}$,) $\mathrm{v}_{\mathrm{b}}=16.9 \mathrm{~km} / \mathrm{s}$;
b) $59.21 \times 10^{11} \mathrm{~m}$.

