Answer on Question \#40138, Physics, Mechanics | Kinematics | Dynamics

a) The distance between the oxygen molecule and each of the hydrogen atoms in a water (H2O) molecule is $0.96 \AA$ and the angle between the two oxygen-hydrogen bonds is 105°. Treating the atoms as particles, find the centre of mass of the system.
b) A stationary ball, with a mass of 0.2 kg , is struck by an identical ball moving at $.4 \mathrm{~ms}^{-1}$. After the collision, the second ball moves 60° to the left of its original direction. The stationary ball moves 30° to the right of the moving ball's original direction. What is the velocity of each ball after the collision?

Solution:

a)

The first step is to choose a coordinate system, such as the one in the diagram, and locate each particle. The chosen origin is the centre of the box.

Atom	Mass (H)	x_{i}	y_{i}	$\mathrm{m}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{m}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
H	1	$-0.96 \sin 15$	$0.96 \cos 15$	-0.248466	0.927289
O	16	0	0	0	0
H	1	0.96	0	0.96	0
Totals:	18			0.711534	0.927289

The coordinates of the centre of mass are given by

$$
x_{c m}=\frac{\sum m_{i} x_{i}}{M_{\text {total }}}=\frac{0.711534}{18}=0.0395297=0.0395 \AA
$$

And

$$
y_{c m}=\frac{\sum m_{i} y_{i}}{M_{\text {total }}}=\frac{0.927289}{18}=0.051516=0.0515 \AA
$$

Answers will vary based on the choice of coordinate system.
b) Solution:
$u=4.0 \mathrm{~m} / \mathrm{s}$ is initial speed of second ball
Let the velocity of the stationary ball and moving ball is v_{1} and $v_{2} \mathrm{~m} / \mathrm{s}$ respectively after the collision

By the law of momentum conservation in $X-Y$ plane:

$$
\begin{align*}
& \quad m v_{1} \cos 30^{\circ}+m v_{2} \cos 60^{\circ}=m u \\
& v_{1} \cos 30^{\circ}+v_{2} \cos 60^{\circ}=u \tag{1}\\
& m v_{1} \sin 30^{\circ}=m v_{2} \sin 60^{\circ} \tag{2}
\end{align*}
$$

From (2):

$$
0.5 \mathrm{v}_{1}=0.866 \mathrm{v}_{2}
$$

$\mathrm{v}_{1}=1.732 \mathrm{v}_{2}$ by putting this value in (1):
$1.732 \mathrm{v}_{2} \times 0.866+\mathrm{v}_{2} \times 0.5=4.0$ $\mathrm{v}_{2}=4.0 /(1.732 \times 0.866+0.5)=2.0$ $\mathrm{v}_{2}=2.0 \mathrm{~m} / \mathrm{s}$
Hence $v_{1}=3.464 \mathrm{~m} / \mathrm{s}$

Answer. a) The centre of mass is located at ($0.0395 \AA, 0.0515 \AA$).
b) final speed of initially stationary ball $3.46 \mathrm{~m} / \mathrm{s}$, final speed of initially moving ball $2.0 \mathrm{~m} / \mathrm{s}$

