Answer on Question \#40129, Physics, Mechanics | Kinematics | Dynamics

a) What is the maximum torque exerted by a 60 kg person riding a bike, if the rider puts all his weight on each pedal when climbing a hill? The pedals rotate in a circle of radius 17 cm
b) A ball of mass 1.5 kg rolling to the right with a speed of, $6.31 \mathrm{~ms}-1$ collides head-on with a spring with a spring constant of $.0 .22 \mathrm{Nm}-1$ Determine the maximum compression of the spring and the speed of the ball when the compression of the spring is 0.10 m

Solution

a) A torque is an influence which tends to change the rotational motion of an object. One way to quantify a torque is

$$
\tau=|\vec{r} \times \vec{F}|=r F \sin \alpha
$$

where τ - torque, \vec{F} - force applied, \vec{r} - lever arm, \times - cross product, α - angle between force and lever arm. The maximum torque would be when $\sin \alpha=1$. So

$$
\tau=r F
$$

The force is the weight of the cyclist

$$
F=W=m g
$$

The maximum torque is

$$
\tau=r m g=0.17 \mathrm{~m} \cdot 60 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=100 \mathrm{~N} \cdot \mathrm{~m} .
$$

Answer: $100 \mathrm{~N} \cdot \mathrm{~m}$.

b) $m=1.5 \mathrm{~kg}$ - mass of ball, $v_{0}=6.31 \frac{\mathrm{~m}}{\mathrm{~s}}$ - initial speed of ball, $k=0.22 \frac{\mathrm{~N}}{\mathrm{~m}}$ - spring constant, $\Delta x=$ 0.10 m - compression of the spring.

Total energy of the system is the sum of the kinetic energy of the ball and the potential energy of the spring:

$$
E=\frac{m v^{2}}{2}+\frac{k x^{2}}{2} .
$$

The maximum compression of the spring would be when the ball stopped (we use the law of conservation of energy):

$$
\frac{m v_{0}^{2}}{2}=\frac{k x_{\max }^{2}}{2} \rightarrow x_{\max }=v_{0} \sqrt{\frac{m}{k}}=6.31 \sqrt{\frac{1.5}{0.22}}=16.5 \mathrm{~m} .
$$

The speed of the ball when the compression of the spring is 0.10 m :

$$
v_{1}^{2}=v_{0}^{2}-\frac{k}{m} \Delta x^{2} \rightarrow v_{1}=\sqrt{v_{0}^{2}-\frac{k}{m} \Delta x^{2}}=\sqrt{6.31^{2}-\frac{1.5}{0.22} \cdot 0.10^{2}}=6.30 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer: $16.5 \mathrm{~m} ; \mathbf{6 . 3 0} \frac{\mathrm{m}}{\mathrm{s}}$.

