Answer on Question \#40110 - Physics - Mechanics | Kinematics | Dynamics

Question: write the equation of motion of a simple harmonic oscillator which has amplitude of 5 cm and it executes 150 oscillations in 5 minutes with an initial phase of 45°. Also obtain the value of its maximum velocity.

Solution: the equation of motion of a simple harmonic oscillator is

$$
\ddot{x}+\omega^{2} \cdot x=0 .
$$

In our case the angular frequency ω is $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{5 \cdot 60 / 150}=\pi \frac{\mathrm{rad}}{\mathrm{s}}$. Finally, we obtain the equation of motion:

$$
\ddot{x}+\pi^{2} \cdot x=0
$$

The solution for x is

$$
x(t)=A \cdot \cos \left(\omega t+\phi_{0}\right)
$$

Where A is the amplitude of the harmonic oscillator, ω - angular frequency, ϕ_{0} - initial phase. In our case solution takes the form

$$
x(t)=5 \cdot \cos \left(\pi t+\frac{\pi}{4}\right)
$$

From last expression we get velocity:

$$
v=\dot{x}(t)=-5 \pi \cdot \sin \left(\pi t+\frac{\pi}{4}\right)
$$

And its maximal value is achieved in time t when $\sin \left(\pi t+\frac{\pi}{4}\right)=-1$:

$$
v_{\max }=5 \pi \frac{\mathrm{~cm}}{\mathrm{~s}}
$$

Answer:

a) The equation of motion is

$$
\ddot{x}+\pi^{2} \cdot x=0 .
$$

b) The maximal value of oscillator's velocity is

$$
v_{\max }=5 \pi \frac{\mathrm{~cm}}{\mathrm{~s}} .
$$

